Underground HV Cable Research - Health Index for HV solid cables

Maxi Faridi
Innovation Engineer, UK Power Networks
maxi.faridi@ukpowernetworks.co.uk

Dawn O’Brien
Principal Consultant, EA Technology
dawn.o’brien@eatechnology.com
Agenda

• Background
• The Challenge
• Development of HV Underground Cable Prioritisation Model
• Methodology
• The Benefits and BaU implementation
• Q&A
Background

- Underground cables offer improved security of supply compared with overhead lines.
- Hence they represent a large part of asset base both in quantity and economic value.
- UK Power Networks operate more than 44,000 km of high voltage underground solid cables.
The Challenge

- Majority installed in 1960’s & 70’s in the UK
- A large portion of UG cables are nearing the end of their life
- Increase in trend of HV cable failures due to deterioration
- Replacements needed to maintain network reliability
- Wide-scale cable replacement is significantly expensive

Need for investment optimisation method to maintain network reliability in a more cost efficient way
Solution: HV Underground Cable Prioritisation Model

Objectives:

- Rank cable circuits according to their failure risk
- Understand HV solid cable deterioration mechanisms
- Develop a pro-active approach for cable replacement
- Quantify consequences of failure
- Optimise our investment strategy
- Improve network reliability by reducing number of faults

NIA Project Info:
Start Date: Sep 2015
End Date: Mar 2017
Funding: £932,477

Project Partners:
Project Stages

Phase 1:
- Identify causes of failure and cable degradation process
- Collection of cable samples following a condition driven fault for forensic analysis to understand the failure mechanism
- Develop an improved cable database to store all analysed results
Project Stages(2)

Phase 2:
• Identify contributing factors of cable degradation
• Identify sources of HV cable data for inclusion into degradation model
• Collation of asset data from database for analysis

Phase 3:
• Design and build HV underground cable prioritisation model

Phase 4:
• Implement the model into business as usual
Causes of cable failure

- Partial Discharge
- Sheath deterioration/corrosion
- Ageing/wear
- Moisture ingress

% of samples

© 2016. UK Power Networks. All rights reserved
Cable Sampling

- **Cable Analysis ID**
- **Details ID**
- **Date Analysed**
- **Cable Type**
- **Cable Visual Inspection** *(Outer & Inner Sheath / Armour / Lead Sheath / Metallic Screen / Conductor)*
- **Insulation** *(Waxing / Pin Holes / Creasing / Discoloration / Screen Interface / Manufacturing Defect / Carbon Deposits / Embrittlement / Water Tree / Electrical Tree / General Condition / Moisture Content / Tensile Strength / Crackle Test / Polymerisation Test / Elongation - median)*
- **Comments** *(Failure Mode / Comments)*
- **Post-Collection Images** *(up to 12 images)*
- **Summary** *(Health Index / Estimate Remaining Life / Recommendation)*
Cable Data

- Definition data from GIS system
- Fault data
- Feeder data
Partial Discharge
Health Index Model
CNAIM EHV Cables

- Age
 - Normal Expected Life
 - Expected Life
- Initial Health Score
- Health Score Modifier
- Measured Condition
- Reliability
- Forensic Analysis
- Observed Condition
- Measured Condition
- Partial Discharge
- Fault Rate
- Sheath Test
- Loading

© 2016. UK Power Networks. All rights reserved
Health Index Model
UK Power Networks HV Cables

- Environment
 - Normal Expected Life
 - Loading
 - Forensic Analysis
 - Partial Discharge
 - Fault Rate
- Age
- Expected Life
- Observed Condition
- Partial Discharge Fault Rate
- Measured Condition
- Health Score Modifier
- Reliability
- Initial Health Score
- Health Index

© 2016. UK Power Networks. All rights reserved
Health Index Model
UK Power Networks HV Cables

No. of customers
Sensitive Customers
Location
Cable Type

Network Performance Consequence
Safety Consequence
Financial Consequence

Criticality Index
Outputs

<table>
<thead>
<tr>
<th>Health /Criticality</th>
<th>HI1</th>
<th>HI2</th>
<th>HI3</th>
<th>HI4</th>
<th>HI5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI1</td>
<td>2,146</td>
<td>3,745</td>
<td>4,331</td>
<td>998</td>
<td>274</td>
</tr>
<tr>
<td>CI2</td>
<td>4,656</td>
<td>5,521</td>
<td>5,998</td>
<td>1,342</td>
<td>347</td>
</tr>
<tr>
<td>CI3</td>
<td>2,244</td>
<td>3,381</td>
<td>1,594</td>
<td>1,166</td>
<td>442</td>
</tr>
<tr>
<td>CI4</td>
<td>1,976</td>
<td>1,071</td>
<td>2,994</td>
<td>240</td>
<td>0</td>
</tr>
</tbody>
</table>
Solution: HV Underground Cable Prioritisation Model

Existing Approach

- HV cable fault
- Fault repair
- Close incident

Pro-active Approach

- Identify high risk cables using HI tool
- Online field testing/fault locations
- Monitor to enable “just in time” response
- Preventive action taken
- Close incident
The Benefits

- Cable replacements are optimised with respect to cost and financial performance
- Improved security of supply and reliability of the network by knowing the condition of our UG cables better
- Reducing the number of customer interruptions
- Optimising our investment strategy replacing cables efficiently
- Best practice operational performance and optimisation
BaU Implementation:
To find out more- come and see us
Thank you